The Maillard reaction is a form of nonenzymatic browning. It results from a chemical reaction between an amino acid and a reducing sugar, usually requiring heat.
Vitally important in the preparation or presentation of many types of food, it is named after chemist Louis-Camille Maillard, who first described it in 1912 while attempting to reproduce biological protein synthesis.
695px-BriocheThe crust of most breads, such as this brioche, is golden-brown due to the Maillard reaction.
The Maillard reaction also occurs in the human body. It is a step in the formation of advanced glycation endproducts (AGEs). It is tracked by measuring pentosidine. Although the Maillard reaction has been studied most extensively in foods, it has also shown a correlation in numerous different diseases in the human body.

4 thoughts on “Wikipedia

  1. shinichi Post author


  2. shinichi Post author

    In general, these diseases are due to the accumulation of AGEs on nucleic acids, proteins, and lipids. Though AGEs have numerous origins, they can form from the oxidation and dehydration of Amadori adducts, which themselves are products of nonenzymatic Maillard reactions. Apart from ocular diseases, whose correlation with Maillard chemistry has been more recently studied, the formation of AGEs has also proven to contribute to a wide range of human diseases that include diabetic complications, pulmonary fibrosis, and neurodegeneration.

    Receptor systems in the body have been suggested to have evolved to remove glycation-modified molecules, such as AGEs, to eliminate their effects. The adverse effects of AGE accumulation appear to be mediated by numerous different AGE receptors. Examples include AGE-R1, galectin-3, CD36, and, most noted, RAGE, the receptor for AGEs.
    Advanced glycation in numerous different locations within the eye can prove detrimental. In the cornea, whose endothelial cells have been known to express RAGE and galectin-3, the accumulation of AGEs is associated with thickened corneal stroma, corneal edema, and morphological changes within patients with diabetes. Within the lens, Maillard chemistry has been studied extensively in the context of cataract formation. Advanced glycation is known to alter fiber membrane integrity in the lens, and dicarbonyl compounds are known to cause increased aggregate formation within the lens. This effect is exacerbated by both diabetes and aging. Furthermore, it is thought that AGE-inhibiting compounds are effective in preventing cataract formation in diabetics.

    Glycation in Maillard reactions may lead to destabilization of the vitreous gel structure within the eye via unnecessary cross-linking between collagen fibrils. Again, this process is more strongly observed within diabetic patients. Within the retina, the accumulation of AGEs in the Drusen and Bruch’s membrane has been associated with age, and has also been observed at a higher level among patients with age-related macular degeneration (AMD). This is manifested by the thickening of the Bruch’s membrane. Furthermore, it has been observed that AGE levels increase with age within the lamina cribosa, and the products of the Maillard reaction have been observed there, as well.

    A wide range of ocular diseases, particularly diabetic retinopathy, may be prevented by the inhibition of the Maillard reaction. This may be achieved in numerous ways: preventing the formation of AGEs, reducing the effectiveness of the AGE signaling pathway and the receptor-ligand interactions, or breaking the AGE crosslinks. This latter method has already been achieved to some extent by the breaker ALT-711, though its effectiveness against retinopathy is unknown. Another method is by the use of amadorins, which are able to prevent the reaction of Amadori intermediates, which form into AGEs by scavenging the reactive carbonyls.

  3. shinichi Post author

    パンケーキまでも!? 食べると恐ろしく老けちゃうNG食べ物5つ


    AGEとはAdvanced Glycation End Productsの略で、終末糖化産物と訳されます。糖とタンパク質が結合、変異をしてAGEへと姿を変えます。このAGEが体内で溜まるほど老化が早まってしまうのです。















  4. shinichi Post author








Leave a Reply

Your email address will not be published.