ウィキペディア

東北日本の東の海中では、約1億年前に太平洋東部で生まれた太平洋プレート(比重の大きい海洋プレート)が、東北日本を載せた北アメリカプレート(比重の小さい大陸プレート)に衝突している。重い太平洋プレートは、軽い北アメリカプレートにぶつかって、斜め下40 – 50°の角度で沈み込んでいる。プレートが衝突して沈み込む部分は海溝となり、衝突した岩盤が互いに動くことで、地震が発生する。地下深く沈んだ太平洋プレートから分離された水が、周辺の岩石の融点を下げるため、マグマが発生し、多くの火山を生成する。太平洋プレートに衝突され押された北アメリカプレートは、圧縮応力を受けてひび割れ、たくさんの断層が発生し、北上山地などが生まれた。
また、海嶺で作られて以来、長い時間をかけて海の底を移動してきたプレートには、チャート、石灰岩、砂岩、泥岩といった多くの堆積物が載っているため、プレートが沈み込む際に陸側のプレートに張り付く現象が起こることがある。これを付加と言い、そうしてできたものを付加体と呼ぶ。日本列島もこのようにしてできた部分が多い。

One thought on “ウィキペディア

  1. shinichi Post author

    プレートテクトニクス

    ウィキペディア

    http://ja.wikipedia.org/wiki/プレートテクトニクス

    プレートテクトニクス(plate tectonics)は、プレート理論ともいい、1960年代後半以降に発展した地球科学の学説。地球の表面が、右図に示したような何枚かの固い岩盤(「プレート」と呼ぶ)で構成されており、このプレートが、対流するマントルに乗って互いに動いていると説明される。

    地球は、半径約6,500キロメートルであるが、その内部構造を物質的に分類すると、外から順に下記のようになる。

    1. 深さ約10 – 30キロメートルまで : 地殻
    2. 深さ約670キロメートルまで : 上部マントル – 最上層、低速度層(アセノスフェア、岩流圏)、遷移層
    3. 深さ約2,900キロメートルまで : 下部マントル – メソスフェア(固い岩石の層)
    4. 深さ約5,100キロメートルまで : 外核(外部コア)
    5. 中心 : 内核(内部コア)

    地殻とマントルは岩石で構成されており、核は金属質である。マントルを構成する岩石は、地震波に対しては固体として振舞うが、長い時間単位で見れば流動性を有する。その流動性は、深さによって著しく変化し、上部マントルの最上部(深さ約100キロメートルまで)は固くてほとんど流れず、約100 – 400キロメートルまでの間は比較的流動性がある。地殻と上部マントル上端の固い部分を合わせてリソスフェア(岩石圏)と呼び、その下の流動性のある部分をアセノスフェア(岩流圏)と呼んで分類する。この厚さ約100キロメートルの固いリソスフェアが地表を覆っているわけであるが、リソスフェアはいくつかの「プレート」という巨大な板に分かれている。

    地球表面が2種類のプレート群からなっていることは、地球表面の高度や深度の分布の割合にもあらわれている。地球表面は、大陸と大陸棚からなる高度1,500メートル – 深度500メートルの部分と、深度2,000 – 6,000メートルの海洋底と呼ばれる部分が多く、その中間である深度500 – 2,000メートルの海底は割合が少なくなっている。

    プレートは大きく見ると十数枚に分けることができ、それぞれ固有の方向へ年に数センチメートルの速さで動かされることになる。

    プレートの動き

    プレートは、その下にあるアセノスフェアの動きに乗って、おのおの固有な運動を行っている。アセノスフェアを含むマントルは、定常的に対流しており、一定の場所で上昇・移動・沈降している。プレートは、その動きに乗って移動しているが、プレート境界部では、造山運動、火山、断層、地震等の種々の地殻変動が発生している。プレートテクトニクスは、これらの現象に明確な説明を与えた。

    大局的なプレートの運動は、すべて簡単な球面上の幾何学によって表される。また、局地的なプレート運動は平面上の幾何学でも十分に説明しうる。3つのプレートが集合する点(トリプルジャンクション)は、それらを形成するプレート境界の種類(発散型・収束型・トランスフォーム型)によって16種類に分類されるが、いずれも初等幾何学で、その安定性や移動速度・方向を完全に記述することができる。

    一般に、プレートの運動は、隣接する2プレート間での相対運動でしか表されない。しかし、隣接するプレートの相対運動を次々と求めることで、地球上の任意の2プレート間の相対運動を記述することができる。近年では、準星の観測を応用した超長基線電波干渉法 (VLBI) と呼ばれる方法やグローバル・ポジショニング・システム (GPS) によって、プレートの絶対運動も理解され始めている。

    発散型境界(広がる境界)

    マントルの上昇部に相当し、上の冒頭図では太平洋東部や大西洋中央を南北に走る境界線に相当する。この境界部は、毎年数cmずつ東西に拡大している。開いた割れ目には、地下から玄武岩質マグマが供給され、新しく地殻が作られている。この部分は、海洋底からかなり盛り上がっており、(中央)海嶺と呼ばれている。また、その付近にはチムニーと呼ばれる熱水の噴出口も多数見つかっている。

    発散型境界は、(中央)海嶺が有名だが、陸上にも存在する。アフリカの大地溝帯やアイスランドなどが知られている。双方とも、大規模な正断層が発達している。

    収束型境界(せばまる境界)

    沈み込み型

    東北日本の東の海中では、約1億年前に太平洋東部で生まれた太平洋プレート(比重の大きい海洋プレート)が、東北日本を載せた北アメリカプレート(比重の小さい大陸プレート)に衝突している。重い太平洋プレートは、軽い北アメリカプレートにぶつかって、斜め下40 – 50°の角度で沈み込んでいる。プレートが衝突して沈み込む部分は海溝となり、衝突した岩盤が互いに動くことで、地震が発生する。地下深く沈んだ太平洋プレートから分離された水が、周辺の岩石の融点を下げるため、マグマが発生し、多くの火山を生成する。太平洋プレートに衝突され押された北アメリカプレートは、圧縮応力を受けてひび割れ、たくさんの断層が発生し、北上山地などが生まれた。

    また、海嶺で作られて以来、長い時間をかけて海の底を移動してきたプレートには、チャート、石灰岩、砂岩、泥岩といった多くの堆積物が載っているため、プレートが沈み込む際に陸側のプレートに張り付く現象が起こることがある。これを付加と言い、そうしてできたものを付加体と呼ぶ。日本列島もこのようにしてできた部分が多い。

    衝突型

    現在でも活発で大規模な大陸衝突が起きているのはヒマラヤだけである。元来、南極大陸と一緒だったインドプレートが分離・北上して、約4,500万年前にアジアプレートと衝突し、そのままゆっくり北上を続けている。大陸プレート同士の衝突のため、日本近海のような一方的な沈み込みは生起せず、インドプレートがユーラシアプレートの下に部分的にもぐりこみながら押し上げている。その結果、8,000メートル級の高山が並ぶヒマラヤ山脈や、広大なチベット高原が発達した。

    規模は小さいながらも、衝突運動が現在でも進行している地域としては、ニュージーランド(南島)や台湾が挙げられる。これらは、世界で最も速く成長している山地であり、台湾の隆起速度は、海岸線でも年間5ミリメートルを超える。

    日本においては、日高山脈や丹沢山地が衝突型造山帯である。特に、丹沢山地は伊豆半島の衝突によってできたものであり、この衝突過程は現在も進行中である。ただし、日高山脈は活動を終えている。
    過去の大規模な大陸衝突の跡は多く見つかっている。有名なものは、ヨーロッパアルプス、アパラチア山脈、ウラル山脈など。大陸衝突の過程には、未知の部分が非常に多く残っている。その理由は、沈み込み型境界では、深部で発生する地震の位置から地下のプレート形状を推定できるのに対して、大陸衝突帯では、深部で地震が発生しないからである。

    トランスフォーム型境界(ずれる境界)

    すれ違う境界同士の間では、明瞭な横ずれ断層(トランスフォーム断層)が形成される。アメリカ西部のサンアンドレアス断層や、トルコの北アナトリア断層などが有名で、非常に活発に活動している。サンアンドレアス断層は大陸上にあるが、一連の海嶺の列(大西洋中央海嶺や東太平洋海嶺など)の間で、個々の海嶺と海嶺をつなぐものが多数を占める。理論上は、2プレート間の相対運動軸を通る大円に直交し、海嶺とも直交する。

    Reply

Leave a Reply

Your email address will not be published. Required fields are marked *