2 thoughts on “Chalmers University of Technology, Sweden

  1. shinichi Post author

    Emissions-free energy system saves heat from the summer sun for winter

    Chalmers University of Technology, Sweden

    https://www.chalmers.se/en/departments/chem/news/Pages/Emissions-free-energy-system-saves-heat-from-the-summer-sun-for-winter-.aspx

    ​A research group from Chalmers University of Technology, Sweden, has made great, rapid strides towards the development of a specially designed molecule which can store solar energy for later use. These advances have been presented in four scientific articles this year, with the most recent being published in the highly ranked journal Energy & Environmental Science.

    Around a year ago, the research team presented a molecule that was capable of storing solar energy. The molecule, made from carbon, hydrogen and nitrogen, has the unique property that when it is hit by sunlight, it is transformed into an energy-rich isomer – a molecule which consists of the same atoms, but bound together in a different way.

    This isomer can then be stored for use when that energy is later needed – for example, at night or in winter. It is in a liquid form and is adapted for use in a solar energy system, which the researchers have named MOST (Molecular Solar Thermal Energy Storage). In just the last year, the research team have made great advances in the development of MOST.

    “The energy in this isomer can now be stored for up to 18 years. And when we come to extract the energy and use it, we get a warmth increase which is greater than we dared hope for,” says the leader of the research team, Kasper Moth-Poulsen, in Nano Materials Chemistry at Chalmers.Professor Kasper Moth-Poulsen holding a tube containing the catalyst, in front of the ultra-high vacuum setup that was used to m

    The research group have developed a catalyst for controlling the release of the stored energy. The catalyst acts as a filter, through which the liquid flows, creating a reaction which warms the liquid by 63 centigrades. If the liquid has a temperature of 20°Celsius when it pumps through the filter, it comes out the other side at 83°Celsius. At the same time, it returns the molecule to its original form, so that it can be then reused in the warming system.

    During the same period, the researchers also learned to improve the design of the molecule to increase its storage abilities so that the isomer can store energy for up to 18 years. This was a crucial improvement, as the focus of the project is primarily chemical energy storage.

    Furthermore, the system was previously reliant on the liquid being partly composed of the flammable chemical toluene. But now the researchers have found a way to remove the potentially dangerous toluene and instead use just the energy storing molecule.

    Taken together, the advances mean that the energy system MOST now works in a circular manner. First, the liquid captures energy from sunlight, in a solar thermal collector on the roof of a building. Then it is stored at room temperature, leading to minimal energy losses. When the energy is needed, it can be drawn through the catalyst so that the liquid heats up. It is envisioned that this warmth can then be utilised in, for example, domestic heating systems, after which the liquid can be sent back up to the roof to collect more energy – all completely free of emissions, and without damaging the molecule.

    “We have made many crucial advances recently, and today we have an emissions-free energy system which works all year around,” says Kasper Moth-Poulsen.

    The solar thermal collector is a concave reflector with a pipe in the centre. It tracks the sun’s path across the sky and works in the same way as a satellite dish, focusing the sun’s rays to a point where the liquid leads through the pipe. It is even possible to add on an additional pipe with normal water to combine the system with conventional water heating.

    The next steps for the researchers are to combine everything together into a coherent system.
    “There is a lot left to do. We have just got the system to work. Now we need to ensure everything is optimally designed,” says Kasper Moth-Poulsen.

    The group is satisfied with the storage capabilities, but more energy could be extracted, Kasper believes. He hopes that the research group will shortly achieve a temperature increase of at least 110°Celsius and thinks the technology could be in commercial use within 10 years.

    Reply
  2. shinichi Post author

    「夏の暑さ」を保存して「冬を暖める」技術開発、ヨーロッパ各地で進む

    by 木村つぐみ

    https://ideasforgood.jp/2022/11/07/summer-heat-for-winter/

    スウェーデン・チャルマース工科大学の研究者が発表した、太陽エネルギーを蓄えるように設計された分子

    炭素、水素、窒素からできた分子に太陽光が当たると、そのエネルギーを蓄えた異性体(分子式は同じだが構造が異なる分子)に変化する。異性体を保存しておき、冬になったら、そこからエネルギーを取り出す仕組みだ。異性体には最長18年、エネルギーを蓄えられるという。

    研究者らは、液体になった分子を建物の屋上に設置。そこで太陽エネルギーを集めた後、液体を室温で保存しておき、必要なときに暖房などに使えると考えている。暖房に使われた液体を屋上に設置すると、再び太陽エネルギーを集められるそうだ。

    Reply

Leave a Reply

Your email address will not be published. Required fields are marked *