Guy Deutscher

When one hears about acts of extraordinary bravery in combat, it is usually a sign that the battle has not been going terribly well. For when wars unfold according to plan and one’s own side is winning, acts of exceptional individual heroism are rarely called for. Bravery is required mostly by the desperate side.

The ingenuity and sophistication of some of the experiments we have encountered is so inspiring that it is easy to mistake them for signs of great triumphs in science’s battle to conquer the fortress of the human brain. But, in reality, the ingenious inferences made in these experiments are symptoms not of great strength but of great weakness. For all this ingenuity is needed only because we know so little about how the brain works.

2 thoughts on “Guy Deutscher

  1. shinichi Post author

    When one hears about acts of extraordinary bravery in combat, it is usually a sign that the battle has not been going terribly well. For when wars unfold according to plan and one’s own side is winning, acts of exceptional individual heroism are rarely called for. Bravery is required mostly by the desperate side.

    The ingenuity and sophistication of some of the experiments we have encountered is so inspiring that it is easy to mistake them for signs of great triumphs in science’s battle to conquer the fortress of the human brain. But, in reality, the ingenious inferences made in these experiments are symptoms not of great strength but of great weakness. For all this ingenuity is needed only because we know so little about how the brain works. Were we not profoundly ignorant, we would not need to rely on roundabout methods of gleaning information from measures such as reaction speed to various contrived tasks. If we knew more, we would simply observe directly what goes on in the brain and would then be able to determine precisely how nature and culture shape the concepts of language, or whether any parts of grammar are innate, or how exactly language affects any given aspect of thought.

    One may object, of course, that it is unfair to describe our present state of knowledge in such bleak terms, especially given that the very last experiment I reported was based on breathtaking technological sophistication. It involved, after all, nothing short of the online scanning of brain activity and revealed which specific areas are active when the brain performs particular tasks. How can that possibly be called ignorance? But try to think about it this way. Suppose you wanted to understand how a big corporation works and the only thing you were allowed to do was stand outside the headquarters and look at the windows from afar. The sole evidence you had to go on would be in which rooms the lights went on at different times of the day. Of course, if you kept watch very carefully, over a long time, there would be a lot of information you could glean. You would find out, for instance, that the weekly board meetings are held on floor 25, second room from the left, that in times of crisis there is great activity on floor 13, so there is probably an emergency control center there, and so on. But how inadequate all this knowledge would be if you were never allowed to hear what was being said and all your inferences were based on watching the windows.

    If you think this analogy is too gloomy, then remember that the most sophisticated MRI scanners do nothing more than show where the lights are on in the brain. The only thing they reveal is where there is increased blood flow at any given moment, and we infer from this that more neural activity is taking place there. But we are nowhere near being able to understand what is “said” in the brain. We have no idea how any specific concept, label, grammatical rule, color impression, orientation strategy, or gender association is actually coded.

    When researching this book, I read quite a few latter-day arguments about the workings of the brain shortly after trawling through quite a few century-old discussions about the workings of biological heredity. And when these are read in close proximity, it is difficult not to be struck by a close parallel between them. What unites cognitive scientists at the turn of the twenty-first century and molecular biologists at the turn of the twentieth century is the profound ignorance about their object of investigation. Around 1900, heredity was a black box even for the greatest of scientists. The most they could do was make indirect inferences by comparing what “goes in” on one side (the properties of the parents) and what “comes out” on the other side (the properties of the progeny). The actual mechanisms in between were mysterious and unfathomable for them. How embarrassing it is for us, to whom life’s recipe has been laid bare, to read the agonized discussions of these giants and to think about the ludicrous experiments they had to conduct, such as cutting the tails off generations of mice to see if the injury would be inherited by the offspring.

    A century later, we can see much further into the mechanisms of genetics, but we are still just as shortsighted in all that concerns the workings of the brain. We know what comes in on one side (for instance, photons into the eye), we know what goes out the other side (a hand pressing a button), but all the decision making in between still occurs behind closed doors. In the future, when the neural networks will have become as transparent as the structure of DNA, when scientists can listen in on the neurons and understand exactly what is said, our MRI scans will look just as sophisticated as cutting off mice’s tails.

    Future scientists will not need to conduct primitive experiments such as asking people to press buttons while looking at screens. They will simply find the relevant brain circuits and see directly how concepts are formed and how perception, memory, associations, and any other aspects of thought are affected by the mother tongue. If their historians of ancient science ever bother to read this little book, how embarrassing it will seem to them. How hard it will be to imagine why we had to make do with vague indirect inferences, why we had to see through a glass darkly, when they can just see face-to-face.

    But ye readers of posterity, forgive us our ignorances, as we forgive those who were ignorant before us. The mystery of heredity has been illuminated for us, but we have seen this great light only because our predecessors never tired of searching in the dark. So if you, O subsequent ones, ever deign to look down at us from your summit of effortless superiority, remember that you have only scaled it on the back of our efforts. For it is thankless to grope in the dark and tempting to rest until the light of understanding shines upon us. But if we are led into this temptation, your kingdom will never come.

    Reply

Leave a Reply

Your email address will not be published. Required fields are marked *