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General intelligence (g) captures the performance variance shared
across cognitive tasks and correlates with real-world success. Yet it
remains debated whether g reflects the combined performance of
brain systems involved in these tasks or draws on specialized sys-
tems mediating their interactions. Here we investigated the neural
substrates of g in 241 patients with focal brain damage using
voxel-based lesion–symptom mapping. A hierarchical factor anal-
ysis across multiple cognitive tasks was used to derive a robust
measure of g. Statistically significant associations were found
between g and damage to a remarkably circumscribed albeit dis-
tributed network in frontal and parietal cortex, critically including
white matter association tracts and frontopolar cortex. We sug-
gest that general intelligence draws on connections between
regions that integrate verbal, visuospatial, working memory, and
executive processes.

lesion patients | voxel-based lesion–symptom mapping | Wechsler Adult
Intelligence Scale | white matter

Individual performances across a wide range of cognitive tasks are
correlated: those people who perform well on some tasks tend to

performwell acrossmost tasks; those peoplewhoperformpoorly on
some tasks tend to perform poorly across most tasks. This effect is
captured by the construct of general intelligence (or g), con-
ceptualized by Spearman in 1904 (1) as that psychometric aspect of
cognition whose variance is shared maximally across a wide variety
of more specialized tests tapping verbal skills, spatial reasoning,
memory, andother cognitive domains. There is strong evidence that
Spearman’s g is notmerely a statistical abstraction but a distinct and
pervasive cognitive ability. It comes into play in particular during
demanding, effortful, nonautomated cognitive tasks requiring
workingmemory capacity (2, 3). It is highly heritable (estimates are
approximately 0.8) (4, 5), and it is a common source of inter-
individual differences in all cognitive tasks (6). Furthermore, g is the
psychological trait with the largest number of social and real-life
correlates (e.g., income level and other measures of success) (7).
Not surprisingly, efforts to understand its neurobiological substrate
have been high on the list of priorities in fields ranging from biology
to psychology and sociology. Here we address the question of
whether g draws upon specific brain regions, as opposed to being
correlated with global brain properties (such as total brain volume).
Identifying such brain regions would help shed light on how g con-
tributes to information processing and open the door to further
exploration of its biological underpinnings, such as its emergence
through evolution and development, and its alteration through
psychiatric or neurological disease.
In the past 20 years a number of functional (3, 8, 9) and struc-

tural imaging studies (10–13), predominantly in healthy individ-
uals and sometimes in combination with studies of heritability (5,
14), have investigated the neural signatures of g. Its neuro-
biological substrates have been variably linked to prefrontal cortex
and the role of this brain region in cognitive control and flexibility
(8), or instead to more distributed cortical regions (15). The latter
account argues that g should involve interregional communication

amongmanybrain regions and therefore critically rely on thewhite
matter connections between them, whereas the former account
argues for a distinct region or network of regions implementing g.
It thus remains debated whether g should be thought of as a single
ability upon which other cognitive processes might draw, or
whether it itself is constituted by the multiple cognitive processes
from which it is psychometrically derived.
Here we investigated the neural substrates for g using non-

parametric (16) voxel-based lesion–symptom mapping (VLSM)
(17) in a large sample of 241 lesion patients (see Table S1 for
demographic data) who had been tested on the Wechsler Adult
Intelligence Scale (WAIS) (18) (see Table S2 for sample sizes
and mean standardized scores on all WAIS subtests). VLSM
compares, for every voxel, scores from patients with a lesion at
that voxel contrasted against those without a lesion at that voxel.
Unlike functional neuroimaging studies, which typically rely on
the metabolic demands of gray matter and provide a purely
correlational association between brain regions and cognitive
processes (19), lesion mapping methods can identify regions,
including white matter tracts, playing a causal role in a particular
cognitive domain by mapping where damage can interfere with
performance (20). We used hierarchical factor analysis across
multiple cognitive tasks (10, 21) to derive a robust measure of g
and found statistically significant associations between g and
damage to a remarkably circumscribed albeit distributed set of
regions in left frontal and right parietal cortex, as well as white
matter association tracts connecting these sectors. These findings
suggest that g reflects the ability to effectively integrate verbal,
visuospatial, working memory, and executive processes via a
circumscribed set of cortical connections.

Results
Extracting g with Hierarchical Factor Analysis. Spearman’s g is often
measured using problem-solving tasks like Raven’s Advanced
Progressive Matrices (RAPM) (3, 9, 22) that require relational
integration across different stimulus dimensions (23). However,
using a single task runs counter to the cross-task variance concept
of g (1). A procedure more in keeping with the original psycho-
metric construct involves extracting g from a battery of cognitive
tests using hierarchical factor analysis (Schmid-Leiman trans-
formation, SLT) (10, 21), in which the loadings of the primary
variables on a second-order g factor take precedence over the
loadings on the first-order factors. Using this approach (see

Author contributions: J.G. and R.A. designed research; D.T. and H.D. performed research;
H.D. contributed new reagents/analytic tools; J.G., D.R., and R.C. analyzed data; and J.G.,
D.R., R.C., L.K.P., D.T., H.D., and R.A. wrote the paper.

The authors declare no conflict of interest.

This article is a PNAS Direct Submission.

Freely available online through the PNAS open access option.
1To whom correspondence should be addressed. E-mail: glascher@hss.caltech.edu.

This article contains supporting information online at www.pnas.org/cgi/content/full/
0910397107/DCSupplemental.

www.pnas.org/cgi/doi/10.1073/pnas.0910397107 PNAS | March 9, 2010 | vol. 107 | no. 10 | 4705–4709

N
EU

RO
SC

IE
N
CE

PS
YC

H
O
LO

G
IC
A
L
A
N
D

CO
G
N
IT
IV
E
SC

IE
N
CE

S

http://www.pnas.org/cgi/data/0910397107/DCSupplemental/Supplemental_PDF#nameddest=st01
http://www.pnas.org/cgi/data/0910397107/DCSupplemental/Supplemental_PDF#nameddest=st02
mailto:glascher@hss.caltech.edu
http://www.pnas.org/cgi/content/full/0910397107/DCSupplemental
http://www.pnas.org/cgi/content/full/0910397107/DCSupplemental
www.pnas.org/cgi/doi/10.1073/pnas.0910397107


Materials and Methods for details), we extracted g and three first-
order factors (verbal abilities, visuospatial abilities, and working
memory) from nine WAIS subtests chosen for their unequivocal
expression of a well-known factor structure (Fig. 1). The SLT
revealed that all verbal subtests (loadings: 0.57–0.66) as well as the
Arithmetic (0.67) and Block Design (0.57) subtests exhibit high
loadings on g, consistent with previous accounts (10). A direct
comparison of the first-order loading matrix before and after SLT
(Fig. 1 A and B) further showed that the factor structure is clearly
preserved in our lesion patients, even after accounting for g. This
confirmed that g absorbed the shared variance among the subtests
without perturbing the psychometric architecture of the three
domain-specific factors, yielding an accurate measure of g that
abstracts from any specific cognitive ability.
To confirm the robustness of our measure of g, we conducted

two additional analyses. First, we extracted g using the same
hierarchical factor analysis as above, but only from a reduced
sample of 117 subjects, who had complete data sets on all WAIS
subtests. This analysis yielded very similar g and first-order
loading matrices (Fig. S1), which was confirmed by a highly
significant similarity coefficient (RV = 0.92, Z = 14.24, P <
0.0001) (24). Second, to demonstrate the robustness of g across
different tasks, we replicated this g extraction using different sets
of WAIS subsets (Table S3, Table S4, and Table S5).In all cases
the g scores were very similar (correlations ranged from 0.97 to
0.99), underlining the robustness of our approach.

Lesion Mapping of g. Our main VLSM analysis related all partic-
ipants’ g factor scores to the lesion pattern in the sample. Statistical
power maps (Fig. S2) confirmed that we had sufficient power in
most regions to detect a significant relationship between lesion
location and g with a 5% false discovery rate (FDR) threshold in
the VLSM analysis (16). Significant effects were prominently
located in the left hemisphere and encompassed expected loca-
tions of major white matter fiber tracts, including the anterior and
dorsal bundle of the superior longitudinal/arcuate fasciculus
connecting temporal, parietal, and inferior frontal regions, the
superior frontooccipital fasciculus connecting dorsolateral pre-
frontal cortex (DLPFC) and possibly the frontal pole with the
superior parietal lobule (25), and the uncinate fasciculus, which
connects anterior temporal cortex and amygdala with orbito-
frontal and frontal polar regions. Right hemispheric loci were
found in the occipitoparietal junction reaching into the postcentral

sulcus and in the anterior bank of the central sulcus (Fig. 2). These
findings lend support to a connectivity account of g: g critically
draws on efficient communication betweenmultiple brain regions,
which is instantiated by major association tracts connecting brain
regions in the inferior frontal and superior parietal lobe (15).
To further test the hypothesis that a neural substrate of gmight

involve the integration among regions that implement more
specific cognitive abilities, we next examined the overlap between
the location of voxels significantly associated with g and with each
of the individual WAIS subtests. We reasoned that the anatomic
conjunction of individual subtest effects with the g-related effect
could help elucidate the extent to which g is implemented in the
aggregate of all cognitive processes working together, or whether
g is constituted by a more abstract overarching subset or superset
as implied by its psychometric derivation. Fig. 1C shows the per-
centage of overlapping voxels associated with g and with each
subtest for each hemisphere separately. The index was computed
as the number of overlapping voxels normalized by the number of
voxels within the union of g and each subtest [overlap/(g ∪ subt-
est], which takes into account that there may be unique voxels
associated with g or with any of the subtests.
This analysis revealed only a modest overlap for Picture

Arrangement (0.10), BlockDesign (0.09), andPictureCompletion
(0.08), indicating that visuospatial skills are vulnerable to damage
inmuch larger areas of the right hemisphere than those involved in
g (Fig. S3).However, workingmemory and verbal skills overlapped
more substantially with the left hemispheric correlate of g, most
notably for the Arithmetic (0.42) and Similarities (0.39) subtests.
These particular subtests rely heavily on the capacity for complex
reasoning and integration of various forms of knowledge and
cognitive processes, in addition to basic verbal and working
memory skills. As such, they recruit skills fromadistributed area of
cortex and depend on cortical connections (26). Likewise, Sim-
ilarities requires integration of various forms of knowledge and
cognitive processes to generate abstract conceptualizations (26).
Thus it seems that the neural substrate of g involves long-range
connections that are broadly distributed throughout the cortex and
yet a more circumscribed neural substrate than that of the
underlying select skills (Fig. S3).
Is there a neural region whose damage uniquely impacts g but

not any of the nine WAIS subtests from which g is psychometri-
cally derived? We addressed this question by examining the
nonoverlap between a disjunction (logical “OR”) of all WAIS

Fig. 1. Extracting Spearman’s g using hierarchical factor analysis. (A) Loading matrix for nine WAIS subtests onto three first-order factors [denoted “verbal,”
“spatial,” and “working memory” (WM)] extracted from a promax-rotated common factor analysis using principal axis factoring. (B) Loading matrices after
applying the Schmid-Leiman transformation (see Materials and Methods for details). The second-order factor (g) absorbs as much variance in the primary
variables (subtests) as possible, and the first-order factors are reduced to partial correlations. (C) Voxelwise percentage of anatomical overlap between g and
WAIS subtests computed as the number of voxels in the overlap divided by the number of voxels in the union of g and each subtest. For clarity, the significant
anatomic regions for g (Fig. 2) were separated into left and right hemispheres. A more detailed view of the overlap can be found in Fig. S3.
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subtests and the lesion pattern found for g (Fig. 3). This analysis
revealed a single region in the left frontal pole [Brodmann Area
(BA) 10] that showed a significant effect unique to g.

Discussion
In this study we investigated the specific neural correlates of
general intelligence (g), a psychological construct predicated on
the fact that test performances on most cognitive tasks are
positively correlated. Using hierarchical factor analysis (SLT),
we measured g in a sample of 241 patients with stable chronic
brain lesions and used VLSM (16, 17) to identify brain structures
associated with g. We found a significant effect on g with lesions
in left hemispheric white matter sectors including the arcuate
and superior longitudinal fasciculus that connect the frontal and
parietal lobe. In addition, we found a sector in the left anterior
frontal pole (BA 10) that is uniquely related to g and not shared
with any other cognitive test.
It is striking that, despite its distributed nature, the neural sub-

strate of g reported here is remarkably circumscribed, con-
centrated in the core of white matter, and essentially always
comprises a narrow subset of the regions associated with per-
formance on individual WAIS subtests. The largest overlap
between WAIS subtests and g was found for Arithmetic, Sim-
ilarities, Information, and Digit Span; the former two tests also
exhibited the greatest conjunction with g. These subtests assess
verbal knowledge about the world, verbal reasoning, and ab-
straction, as well as working memory capacity, and are associated
with the left inferior frontal gyrus, the superior longitudinal/arc-

uate fascicule, and to somedegreewithparietal cortex (27) (Fig. S3).
This suggests that g draws on the combination of conceptual know
ledge and working memory, and that the communication between
areas associated with these capacities is of crucial importance (2).
Such an interpretation is consistent with the Parieto-Frontal Inte-
gration Theory (P-FIT) (15), which postulates roles for cortical
regions in theprefrontal (BA6, 9–10, 45–47), parietal (BA7, 39–40),
occipital (BA 18–19), and temporal association cortex (BA 21, 37).
Our results emphasize the important role of white matter tracts in
binding the proposed regions together into a unified system sub-
serving g, in line with a recent study relating whitematter integrity to
intellectual performance (28): the study reported significant corre-
lations between integrity of the superior fronto-occipital fasciculus
and full-scale intelligence quotient (IQ) (a measure related, but not
identical, to g).
Working memory, which seems to be left lateralized when

tested in the verbal domain (29), is considered a key cognitive
ability strongly related to g (2, 3, 30). The white matter tracts
identified in our analysis connect ventrolateral prefrontal cortex
(VLPFC) and DLPFC with the inferior parietal cortex and ter-
minate in the superior parietal lobule. In general, VLPFC is
associated with processing intentions and switches between cog-
nitive sets, which—in the context of working memory—could
correspond to stimulus–response mappings underlying successful
performance (31). By contrast, the DLPFC is thought to be
involved in the manipulation of items in working memory (31).
Finally, the left posterior parietal cortex has been associated with
the storage of verbal material in working memory (32).

Fig. 2. Lesion mapping of g. 3D renderings show cortical and subcortical regions with a statistically significant relationship between lesion location and g
(corrected at 5% FDR). Axial slices are shown for a more detailed inspection.

Fig. 3. Overlap (yellow) of g (green) and a disjunction (logical “OR”) of nine WAIS subtests (red) thresholded at 5% FDR. A region in the left frontal pole
(white circles) is unique to g and not captured by any other subtest. Immediately adjacent (left lateral orbitofrontal cortex and underlying white matter) lies
the significant lesion–deficit effect for the Information subtest from the WAIS, which partially overlaps with the unique frontal polar region for g (two left-
most circles).

Gläscher et al. PNAS | March 9, 2010 | vol. 107 | no. 10 | 4707

N
EU

RO
SC

IE
N
CE

PS
YC

H
O
LO

G
IC
A
L
A
N
D

CO
G
N
IT
IV
E
SC

IE
N
CE

S

http://www.pnas.org/cgi/data/0910397107/DCSupplemental/Supplemental_PDF#nameddest=sfig03


Although our findings generally support the P-FIT model, they
also suggest that a sector of prefrontal cortex may play a unique
role in g (Fig. 3). Interestingly, this region (left lateral aspect of
BA 10) has been also associated with increased blood oxygen
level–dependent (BOLD) activity during a variety of higher-order
cognitive processes (23), including retrieval of abstract semantic
knowledge, as is required for the Similarities subtest (33), as well
as difficult problem-solving tasks akin to the RAPM (34), a test
commonly used tomeasure g (3, 9, 15, 22). Our finding of a unique
neural correlate of g in BA 10 argues for another, distinct aspect
complementing the distributed processing discussed above: the
need for hierarchical processing control. BA 10 has a documented
role in cognitive control and subgoal processing (35–38) and may
thus be involved in the allocation of the working memory
resources necessary for successful performance on specific cog-
nitive tasks. Taken together, our findings argue that g may crit-
ically rely on efficient interregional communication subserving
processes for configuring and holding items in working memory,
along with a hierarchical component for flexible control in the
frontopolar cortex. Such an interpretation would be consistent,
respectively, with the fluid information processing nature of g as
well as its effortful “executive” aspect (8, 30).
It could be argued that the high g loadings of the verbal scales are

driving the predominant left lateralization that we observed. How-
ever, if g was dominated by purely verbal performance (as captured
in the “verbal” factor in our factor analysis; Fig. 1A), then g should
have picked upmore shared variance from these scales, leading to a
disproportionate reduction of first-order “verbal” loadings after the
SLT (Fig. 1B).Thiswas, however, not generally the case.The largest
attenuations of first-order loadings were found for Vocabulary,
Arithmetic, and Digit Span (Fig. S4), the latter two originally
belonging to the working memory factor, which reinforces our
suggestion that working memory and the frontoparietal regions it
involves contributes largely to g (2, 3, 26, 27).
An interesting question pertains to the stability of g as a psy-

chological trait across the lifespan. The age de-differentiation
hypothesis predicts an increasing contribution of g to cognitive
performances during the later stages of life (39). This would pre-
dict that g explains a greater amount of task variance in older
subjects. We tested this hypothesis in our sample by dividing the
subject sample into young and old subjects (median-split) but
found no support for the hypothesis (percentage explained var-
iance: young subjects, 36.0%; old subjects, 30.6%). This lack of
support for the age de-differentiation hypothesis is consistent with
earlier work (40, 41).
In conclusion, we show that g draws on a distributed but cir-

cumscribed set of cortical regions and their white matter con-
nections. These comprise regions related to working memory
capacity, verbal and visuospatial processing, subserved by a fron-
toparietal system, along with an executive component subserved
by left frontopolar cortex. Two closing caveats should be noted.
First, given that lesions influencing g were found in both hemi-
spheres, we would expect commissural tracts to contribute sig-
nificantly. However, these were underrepresented in our lesion
sample and thusmay not have been detected. Second, Spearman’s
g disregards theories of multiple intelligences (42) and does not
incorporate specific emotional abilities (43). Therefore we may
have isolated an anatomical network important for processing
external stimuli, which might operate in parallel with others that
aremore critical for stimulus reward processing and interoception.

Materials and Methods
Subjects and Neuropsychological Data. The WAIS-R and/or WAIS-III was
administered to 241 neurologic patients who were being evaluated in
connection with their enrollment in the Iowa Cognitive Neuroscience Patient
Registry at the University of Iowa, over the course of approximately 2 dec-
ades. When only WAIS-R data were available, the subtest scores were con-
verted to WAIS-III equivalents according to the standardized scores reported

in the WAIS-III manual. Under the auspices of the Registry, the patients had
been extensively characterized in terms of their neuropsychologic (44) and
neuroanatomic status (45). Demographic data are given in Table S1. Where
multiple datasets were available, we chose neuropsychological and neuro-
anatomical datasets that were as contemporaneous as possible. All patients
had single, focal, stable, chronic lesions of the brain, and the Registry
excludes patients with progressive disease or psychiatric illness. All subjects
had given written informed consent to participate in these research studies.

Neuroanatomical Data. All neuroanatomical data were mapped using MAP-3,
as described previously (45, 46). Briefly, the visible lesion in each subject’s MRI
or CT scan was manually traced, slice by slice, onto corresponding regions of a
single, normal reference brain (template brain) that has been used in all prior
studies with this method. All of the lesions were traced by a single expert
(H.D.) who has demonstrated high reliability (47). This manual tracing was
only done when confidence could be achieved for matching corresponding
slices between the lesion brain and the reference brain. Thus, lesions were
only mapped, if (i) they were clearly distinguishable from the (possibly dila-
ted) ventricular system, (ii) there were no coexisting signs of cortical atrophy,
and (iii) the MRI or CT scan showed no imaging artifact. Because the neuro-
anatomical data were manually traced to a stereotaxic template, no auto-
mated spatial normalization was required. The lesion maps for each subject
were resampled to an isotropic voxel size of 1 mm3, spatially smoothed with a
4-mm full-width-at-half-maximum (FWHM) Gaussian kernel, binarized at a
threshold of 0.2, and finally converted to the NiFTI file format.

Hierarchical Factor Analysis. We computed g loadings from 9 WAIS subtests
and individual g factor scores using a two-stage Schmid-Leiman hierarchical
factor analyis (48), which has been recommended as the preferential
method for extracting a g factor (49). In the original data matrix Z of 241
patients missing data were replaced by the mean. We then analyzed the
data correlation matrix R in a common factor analysis and extracted three
promax-rotated principal factors, resulting in the first-order loading matrix
P1 shown in Fig. 1A. The factor correlation matrix F of this first-order factor
analysis was analyzed in a second-order common factor analysis extracting a
single factor (g) resulting in a second-order loading matrix P2.

In the frameworkof the Schmid-Leiman factor transformation, loadings for
the primary variables (WAIS subtests) onto the second-order factor (g) take
precedence over loadings onto the first-order factors (verbal, spatial, and
working memory), which are reduced to part correlations (50) and thus differ
from the loadingsof the initial factor analyses above (Fig. 1B). The residualized
first-order loading matrix is computed by postmultiplying the original first-
order loading matrix P1 with the second-order uniqueness U2: P1SL = P × U2
(Fig. 1B). Similarly, theg loadings of theprimary variables (WAIS subtests)were
determinedbymultiplicationofboth loadingmatrices:P2SL=P1×P2 (Fig. 1B).

Following ref. 51, we computed factor scores using regression of the data
correlationmatrix R onto thefirst-order structurematrix S = P1× F. Parameter
estimates Bwere determined by B = R−1 × S. These parameter estimates were
rescaled using a diagonal matrix D = sqrt[diag(BT×S)]−1. The resulting
weighting matrix W = B × D was used to project the original data onto the
residualized first-order factor space: FS = Z × W, where FS are the factor
scores. An analogous procedure was used to determine g factor scores.

Extraction g from the WAIS and Comparison of Different Factor Solutions. We
selected nine WAIS subtests for extracting g. Three subtests (Matrix Rea-
soning, Letter–Number Sequencing, and Symbol Search) were undersampled
(n < 100) compared with the rest of the subtests, because these are unique
to the WAIS-III and therefore not administered to all of our patients. We
therefore excluded these from our final set. Table S2 lists the means, SDs,
and sample sizes of all WAIS subtests.

The WAIS exhibits a robust first-order factor structure, which is used to
derive index scores for three factors: (i) verbal (Vocabulary, Similarities,
Information, and Comprehension), (ii) spatial (Picture Completion, Block
Design, and Picture Arrangement), and (iii)working memory (Digit Span and
Arithmetic) (10). This factor structure was used to extract g loadings and
factor scores. Here, however, to demonstrate the robustness of our extrac-
tion of g we report the factor solutions for 10 and 13 WAIS subtests for
comparison with the solution for 9 subtests used as the main analysis (Table
S3, Table S4, and Table S5). The g factor scores derived from either solution
were highly correlated: r(WAIS13, WAIS9) = 0.97, r(WAIS13, WAIS10) = 0.98,
r(WAIS10, WAIS9) = 0.99.

Lesion Analysis of g Factor Scores. The g factor scores were used for non-
parametric (16)VLSM (17) as implemented in “NonparametricMapping,”which
is part of the MRIcron software package (http://www.sph.sc.edu/comd/rorden/
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mricron/). This mass-univariate analysis compares the g factor scores between
patientswithandwithouta lesionateachandevery voxel in thebrain. Ituses the
Brunner-Munzel test, a nonparametric variant of the two-sample t test that
allows for heteroscedasticity of the variances in both groups (52). We used a
threshold of 5% FDR (53) to control for multiple comparisons and an extent
threshold of 50 voxels per cluster.Maps of statistical power (54)were computed
to verify that we had sufficient coverage to detect a significant lesion–deficit
relationship in almost theentire brain (Fig. S2). Thesepower calculations (16)use
the nonparametric Wilcoxon-Mann-Whitney probability to estimate a power
threshold. For instance, had our sample sizebeenonly 10patients ofwhom (at a
particular voxel) only 3 had a lesion, then themost extreme rankingwouldbeW
=6 (sumof the rank 1, 2, and 3), which corresponds to a P value of 0.01667 or a Z
value of 2.13. Therefore, if our statistical threshold corresponding to a 5% FDR

thresholdhadbeenZ=2.56,wewouldnotexpect todetect this voxel notmatter
how large the effect size actually is.
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