Cultured meat

In-Vitro meat is the (idea of) manufacturing of meat products through “tissue-engineering” technology. Cultured meat (= in-vitro meat = clean meat) could have financial, health, animal welfare and environmental advantages over traditional meat. The idea: To produce animal meat, but without using an animal. Starting cells are taken painlessly from live animals, they are put into a culture media where they start to proliferate and grow, independently from the animal. Theoretically, this process would be efficient enough to supply the global demand for meat. All this would happen without any genetic manipulation, i.e. without the need to interfere with the cells’ genetic sequences.
Producing cultured meat for processed meat products, such as sausages, burgers and nuggets should be comparatively simple, whereas cultured meat which should be more highly structured, such as for an in-vitro steak is considerably more of a challenge. A steak is made of muscle tissue which is threaded through with extremely long, fine capillaries which transport blood and nutrients directly to the cells. It is much more difficult to reproduce such a complex structure than it is to put together the small balls of cells which grow to larger balls of cells which in turn become in-vitro chicken nuggets.

3 thoughts on “Cultured meat

  1. shinichi Post author

    CULTURED MEAT

    CULTURED MEAT; MANUFACTURING OF MEAT PRODUCTS THROUGH “TISSUE-ENGINEERING” TECHNOLOGY

    Future Food – In Vitro Meat

    https://www.futurefood.org/in-vitro-meat/index_en.php

    In-Vitro meat is the (idea of) manufacturing of meat products through “tissue-engineering” technology. Cultured meat (= in-vitro meat = clean meat) could have financial, health, animal welfare and environmental advantages over traditional meat. The idea: To produce animal meat, but without using an animal. Starting cells are taken painlessly from live animals, they are put into a culture media where they start to proliferate and grow, independently from the animal. Theoretically, this process would be efficient enough to supply the global demand for meat. All this would happen without any genetic manipulation, i.e. without the need to interfere with the cells’ genetic sequences.

    Producing cultured meat for processed meat products, such as sausages, burgers and nuggets should be comparatively simple, whereas cultured meat which should be more highly structured, such as for an in-vitro steak is considerably more of a challenge. A steak is made of muscle tissue which is threaded through with extremely long, fine capillaries which transport blood and nutrients directly to the cells. It is much more difficult to reproduce such a complex structure than it is to put together the small balls of cells which grow to larger balls of cells which in turn become in-vitro chicken nuggets.

    The most important challenges to overcome in order to outperform animal derived meat in terms of taste and economics are:

    Starter Cells:

    These can be taken painlessly from live animals via biopsy. The question is: Which type of cells should be used? Stem cells are cells which, in a manner of speaking, have not yet decided what they will become; muscle cells, bones cells or one of so many other kinds of cells? This is a disadvantage because very specific cells are needed for the production of in-vitro meat. However, the advantage of stem cells is that they proliferate rapidly. The alternative to using stem cells would be to use fully defined muscle cells that “know what they are” although the problem here is that they hardly multiply at all. A compromise is to use cells which are between the two extremes, in other words, cells that proliferate at an acceptable pace and that are at the same time sufficiently differentiated from other cell types, for example, myoblast cells.

    Growth Medium / Culture Media:

    The aim is to find a medium in which the cells can grow that is cost effective and free from animal ingredients. Serum from calves, for example, cannot be used with cultured meat. Because cultured meat does not have the digestive organs that a live creature has, which convert nutrients to feed the cells, the medium must be able to supply the cells directly with what they need.

    Material for an edible scaffold for the cells to attach themselves to:

    In order to produce three-dimensional in-vitro meat, it is necessary to have a scaffold. The ideal is an edible scaffold that would not need to be extracted from the end product. To simulate the stretching that muscle cells undergo as a living creature moves around it is highly desirable to develop a scaffold that could periodically shift its form thus “exercising” the cells. This could be achieved by using a stimuli-sensitive scaffold made of alginate, chitosan or collagen, from non-animal sources. The scaffold would then stretch periodically in response to small changes in temperature or pH levels. The cells could also attach themselves to a membrane or tiny beads which could be layered on top of each other and connected together.

    Bioreactor:

    It is in the bioreactor that everything comes together; the cells, the culture medium and the scaffold. Through fluctuations in temperature an environment is created which can be likened to a fitness centre with movement training for the muscle cells. Cultured meat must consist of small and large fibres of muscle cells in addition to connective tissue which produces collagen and elastin as well as fat cells which are important for the taste of the end product.

    Economically viable solutions for the above listed points have not yet been fully researched. We are still waiting for the big breakthrough.

    We would like to briefly remark on the idea of food being natural: It is intended that cultured meat should replace industrialised intensive farming; this poses no threat or competition to farming organic vegetables, for example. Compared to the unnaturalness of industrial animal farming, cultured meat would be undoubtedly a progressive step in terms of health, animal welfare and ecology.

    Status Quo of the global research:

    Currently, there are 3 very active countries in the cultured meat research: The USA, mainly California, with companies like “Memphis Meats” or “Hampton Creek / Just ” or “Finless Foods” (cultured fish), the Netherlands with”MosaMeat” and last not least Israel with “Supermeat” and “The Kitchen Foodtech Hub”. Japan could become a further hotspot of research with the open source “Shojinmeat Project”.

    Reply
  2. shinichi Post author

    (Google Translate)

    培養肉; 「組織工学」技術による肉製品の製造。

    体外肉は、「組織工学」技術による肉製品の製造(の考え)です。 培養肉 (= 体外肉 = クリーンな肉) は、伝統的な肉に比べて経済的、健康、動物福祉、環境面での利点がある可能性があります。 アイデアは、動物を使用せずに動物の肉を生産することです。 出発細胞は生きた動物から痛みを伴わずに採取され、培養培地に入れられ、そこで動物とは独立して増殖し、成長し始めます。 理論的には、このプロセスは世界の食肉需要を十分に満たすのに十分効率的です。 これらすべては、遺伝子操作を一切行わずに、つまり細胞の遺伝子配列に干渉する必要なしに起こります。

    ソーセージ、ハンバーガー、ナゲットなどの加工肉製品用の培養肉の生産は比較的簡単ですが、体外ステーキなどのより高度に構造化された培養肉の生産はかなり困難です。 ステーキは筋肉組織でできており、筋肉組織には非常に長く細い毛細血管が通っており、血液や栄養素を細胞に直接輸送します。 このような複雑な構造を再現することは、小さな細胞球を集めて大きな細胞球に成長し、最終的に in vitro チキンナゲットになることよりもはるかに困難です。

    味と経済性の面で動物由来の肉を上回るために克服すべき最も重要な課題は次のとおりです。

    スターターセル:

    これらは生きた動物から生検によって痛みなく採取できます。 問題は、どの種類の細胞を使用すべきかということです。 幹細胞は、いわば、自分が何になるかまだ決まっていない細胞です。 筋肉細胞、骨細胞、あるいはその他多くの種類の細胞のうちの 1 つでしょうか? インビトロ肉の生産には非常に特殊な細胞が必要であるため、これは欠点です。 ただし、幹細胞の利点は、急速に増殖することです。 幹細胞を使用する代わりに、「それが何であるかを知っている」完全に定義された筋肉細胞を使用することになりますが、ここでの問題は、それらがほとんど増殖しないことです。 妥協策は、この 2 つの極端な中間にある細胞、つまり、許容可能なペースで増殖し、同時に他の細胞型 (筋芽細胞など) から十分に分化している細胞を使用することです。

    増殖培地/培養培地:

    目的は、コスト効率が高く、動物性成分を含まず、細胞が増殖できる培地を見つけることです。 たとえば、子牛の血清は培養肉には使用できません。 培養肉には、栄養素を細胞に供給するために変換する生き物のような消化器官がないため、培地は細胞に必要なものを直接供給できなければなりません。

    細胞が付着するための食用足場の材料:

    立体的な体外肉を作製するには足場が必要です。 理想は、最終製品から抽出する必要のない食用の足場です。 生き物が動き回るときに筋肉細胞が受ける伸長をシミュレートするには、定期的に形状を変化させて細胞を「運動」させることができる足場を開発することが非常に望ましいです。 これは、非動物源からのアルギン酸塩、キトサン、またはコラーゲンで作られた刺激に敏感な足場を使用することで達成できます。 この足場は、温度や pH レベルの小さな変化に応じて定期的に伸縮します。 細胞はまた、膜または小さなビーズに付着し、それらを互いに重ねて接続することもできます。

    バイオリアクター:

    バイオリアクターの中ですべてがひとつに集まります。 細胞、培地、足場。 温度の変動により、筋肉細胞の運動トレーニングを行うフィットネスセンターに似た環境が作成されます。 培養肉は、コラーゲンとエラスチンを生成する結合組織に加えて、最終製品の味に重要な脂肪細胞に加えて、大小の筋細胞の繊維で構成されている必要があります。

    上記の点に対する経済的に実行可能な解決策はまだ十分に研究されていません。 私たちはまだ大きな躍進を待っています。

    食品は自然であるという考えについて簡単に述べておきたいと思います。培養肉は工業化された集約的農業に取って代わるべきであると意図されています。 これは、例えば有機野菜の栽培に脅威や競争をもたらすことはありません。 工業的畜産の不自然さに比べれば、健康、動物福祉、生態学の観点からすれば、培養肉は間違いなく進歩的な一歩となるだろう。

    世界的な研究の現状:

    現在、培養肉の研究が非常に活発な国が 3 か国あります。米国、主にカリフォルニアには「メンフィス・ミーツ」、「ハンプトン・クリーク / ジャスト」、「フィンレス・フーズ」(養殖魚)などの企業があり、オランダには「モサミート」があります。 そして最後に特筆すべきはイスラエルの「Supermeat」と「The Kitchen Foodtech Hub」だ。 日本はさらに感染症のホットスポットになる可能性がある

    Reply
  3. shinichi Post author

    Cultivated Meat to Secure Our Future: Hope for Animals, Food Security, and the Environment

    by Michel Vandenbosch, Philip Lymbery

    This provocative book informs, inspires, and opens debates about cultivated meat. An amazing collection of visionary and respected contributors powerfully present the latest research and opinions regarding its potential for solving our current planetary crises.

    Cultivated Meats to Secure Our Future features an amazing collection of visionary and respected contributors. Each powerfully presents the latest research and opinions regarding its potential for solving our current planetary crises. Contributors include Isha Datar of New Harvest, Chase Purdy, author of Billion Dollar Burger and Hanna Tuomisto one of the world’s leading researchers in the field of environmental sustainability assessment of cell-cultured food production technologies. Also included is a thought-provoking foreword by Ira van Eelen, daughter of Willem van Eelen the godfather of cultivated meat, and CEO of CEO of KindEarth.Tech and RESPECTfarms.

    Reply

Leave a Reply

Your email address will not be published. Required fields are marked *